Zadanie

Mati pochopil, že sa s Marekom nemôže porovnávať, a tak túto úlohu prenechal na Teri.

Teri porovnáva Matiho a Mareka, ktorí si za svojich reprezentantov zvolili dve nezáporné reálne čísla \(x\), \(y\) také, že \(x+y=2\). Dokážte, že \[x^2 y^2 (x^2+y^2) \leq 2.\]

Na začiatok si všimnime, že nejakým spôsobom by sme z rovnice \(x+y=2\) chceli dostať jednu premennú a tú dosadiť do nerovnice. Chceme to ale urobiť tak šikovne, aby sa nám tam aj čosi vykrátilo alebo sčítalo na nulu. Chceme teda skúsiť použiť nejaký vzorec na úpravu kvadratického výrazu, pričom členy veľmi rýchlo ubúdajú výrazu \((a+b)\cdot(a-b)=a^2-b^2\). Vhodnou substitúciou sa teda javí \[x=1+t,\]\[y=1-t,\]kde \(t\in\langle-1;1\rangle\). Dosadením potom dostaneme \[\begin{align} (1+t)^2\cdot(1-t)^2\cdot((1+t)^2+(1-t)^2)&=(1-t^2)^2\cdot(1+2t+t^2+1-2t+t^2)=(1-t^2)\cdot(1-t^2)\cdot(2+2t^2)=\\ &=2\cdot(1-t^2)\cdot(1-t^2)\cdot(1+t^2)=2\cdot(1-t^2)\cdot(1-t^4).\end{align}\] Teraz si všimnime, že \(t\in\langle-1;1\rangle\). To znamená, \(0\leq t^2 \leq 1,0\leq t^4 \leq 1\) (všimnime si, že vďaka párnej mocnine je znamienko irelevantné), teda že \(0\leq 1-t^2 \leq 1,0\leq 1-t^4 \leq 1\) a teda že \(2\cdot(1-t^2)\cdot(1-t^4)\leq 2\cdot 1\cdot 1=2\), čo sme aj chceli dokázať.

Diskusia

Tu môžte voľne diskutovať o riešení, deliť sa o svoje kusy kódu a podobne.

Pre pridávanie komentárov sa musíš prihlásiť.