Jožovi bolo v Belgicku smutno a tak si pospomínal na časy, keď išiel vedúcovať svoje prvé sústredenie. Organizoval tam hru, ktorá sa hrala v ôsmich miestnostiach. Na začiatku hry sa družinka šiestich účastníkov rozdelila do miestností, každý účastník do inej. Po každom kole sa každý účastník presunie do inej miestnosti. Pritom presúvať sa medzi miestnosťami sa dá len tak, ako je naznačené na obrázku. Dokážte, že bez ohľadu na to, ako sa družinka na začiatku rozdelí, nikdy sa nestretnú všetci jej účastníci v jednej miestnosti.1
Bolo by blbé, keby sa takáto hra hrala na sústredení, obzvlášť ak by pre výhru bolo potrebné stretnúť sa jednej miestnosti. Našťastie si vedúci pomáhajú a Viťo pomohol odhaliť Jožovi túto chybičku.↩
Odovzdávanie
Na odovzdávanie sa musíš prihlásiť
Otázky a diskusia
Po skončení kola budete mať príležitosť na diskutovanie o riešeniach v diskusii pod vzorovým riešením.